If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9t^2+3t+2=0
a = -9; b = 3; c = +2;
Δ = b2-4ac
Δ = 32-4·(-9)·2
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-9}{2*-9}=\frac{-12}{-18} =2/3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+9}{2*-9}=\frac{6}{-18} =-1/3 $
| x-46=59 | | -5=5(3x+2) | | 4-6x=4x-6x+10 | | 12-4(a+2)=9a | | 2(4x-5)=-3x-32 | | 13x+15=6x-41 | | p+17=-16 | | -0.83-0.97r=-0.2771 | | 15=9.8/2*t^2 | | 5x+4=-2x-29 | | -n+(-7)=-5 | | 6x^2+189x+987=0 | | (6x+7)=(7x-13) | | 5x-20=6x-21 | | (3y+6)(11)=-9 | | 36^x-1=216^2x | | b-6=22 | | 120°=x | | 15=9.8/2*t | | x2−18x+77=0 | | {3y+6}{11}=-9 | | 6x+7=7x-13 | | 34-y=27 | | 2^2v=2^v-1 | | v2+7v-8=0 | | x+2(x−4)=5x+x−10 | | 14=32+z | | (3x)(x)=2700 | | 11+2x-14=5+x | | 1/4(x-12)=-10 | | 70=2x+40 | | 4x=112=9x=72 |